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Roughening and pinning transitions for the polaron 
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D-8000 Munchen 2, Germany 
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Abstract. In the recent literature it is claimed that the polaron exhibits a transition from 
a delocalised to a localised ground state as the coupling to the phonon field is increased. 
The statistical mechanics analogy of this transition is the roughening transition. We argue 
that no such roughening can occur for the polaron. We point out the possibility of a 
pinning transition in a suitable, fixed pinning potential. 

1. Introduction 

The polaron (for a review see Devreese (1972)) is an electron coupled to the longitudinal 
optical mode of an ionic crystal. It is described by the Frohlich Hamiltonian 

H = - ( h2/2m)A+ v(X) -I- hw d3k I 
+ hw( h/2mw)”4(4.rra)”2 d3k 1kI-l eik’(ak + a i k ) .  (1.1) I 

We use here the standard notation: m is the mass of the electron, A the Laplacian in 
three dimensions. { a ; ,  akl k E R3} is the optical part of the phonon field, w the frequency 
of the optical lattice vibration and (Y is the dimensionless coupling constant. Henceforth 
we set m = h = w = 1 and keep the coupling constant a as the only parameter. V is 
an external potential. In most treatments, V =  0. Physically V could originate from 
a well isolated lattice impurity or it could represent the periodic lattice potential. 

We want to study ground state expectations of the polaron, in particular its spatial 
distribution p,(q) d3q. Quantum mechanically it is defined by 

T-m lim Tr eCTHf(x)/Tr e-TH = ( f ( ~ ) ) ~ ( a )  = d3qp,(q)f(q) (1.2) 

for bounded and continuous functions J: Here ( . .) denotes ground state expecta- 
tions with the dependence on the parameters indicated in the round brackets. (In the 
first two terms f (x)  is understood as a function of the position operator x.) 

If V = 0, then Tr eWTH = 03 because of the delocalisation of the electron. Therefore 
one has to add a confining potential and remove it after having taken the limit T +  cc, 
i.e. remove it in the ground state. Two natural confining potentials suggest themselves: 
we add a potential ~ K X ~ ,  K > 0, or we restrict the motion of the electron to the box A 
and take in the ground state the limit K + 0, resp. AT@. 
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534 H Spohn 

Feynman (1955) observed that the kernel of e-TH can be written as a functional 
integral, cf Ginibre (1971) for some mathematical details. Because of their Gaussian 
character the phonon degrees of freedom can be integrated. The spatial distribution 
of the polaron is then obtained by the following prescription. Let P(dx(  )) be the 
Wiener measure. In our context we think of it as standard Brownian motion starting 
at x(  - T )  with the uniform distribution d3x. Then 

Z ( 2 T )  is the obvious normalisation factor. The action S ,  is given by 

with 

g T ( t )  = (e-(2T-')+e-')/(1 -e-2T) (1 .5)  

for O s  t s 2T. The first &function ensures that the endpoints of the path, x ( - T )  and 
x (  T ) ,  agree. Because of periodicity we could replace x(0) by x( T ) .  Then in (1.3) we 
would integrate over all paths starting at q at t = - T and ending at q at t = T. In the 
above form the analogy with statistical mechanics is more apparent. 

We want to understand whether the polaron exhibits the phenomenon of localisa- 
tion. In (1.4) we choose for V the confining potential V(x) = ~KX' .  This is in complete 
analogy to the external magnetic field h of a statistical mechanics model with O ( N )  
symmetry, say. If the temperature p- '  < p i ' ,  the limit h + 0, singles out a particular 
phase with broken symmetry. With the potential added the polaron has the well defined 
spatial density pa,,( q )  in the ground state. If the polaron is localised, then the limiting 
density 

$5 ( 4 )  = PQ ( 4 )  (1.6) 

is still normalised to one, i.e. 5 d3qpa(q) = 1. If the polaron is delocalised, then 

$5 P Q , K  ( 9) = O' (1.7) 

With an appropriate normalisation, usually, one may still define an unnormalised 
polaron density. A convenient, although not completely sharp, criterion is the second 
moment 

D(a ,  K )  = d3qq2p*,,(q). ( 1  3) 

If D( a, K = 0,) <CO, then the polaron is localised and D( a, K = 0,) +CO as a + ac, the 
critical coupling at which the polaron delocalises. 

On the basis of variational calculations the following transition is predicted (Tokuda 
et a1 1981), cf also Manka (1978), Feranchuk et a1 (1984), Tokuda and Kato (1982) 
Shoji and Tokuda (1981) and Jackson and Platzman (1981). The authors consider the 
impurity potential V(x) = -p/lxl, p 3 0 .  The second moment (1.8) in the limit K ' 0 ,  
is denoted by D(a,  p ) .  Then, if a is sufficiently large, 

i 

D(a ,  p = 0 )  <CO. (1.9) 
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As a decreases the width of the spatial distribution of the polaron increases and there 
is a critical value ac, aC= 8.5, where D(a ,  /3 = 0) + cc as a + ac. The dependence of 
D(a ,  /3) on /3 is also discussed. 

The occurrence of such a phase transition gains further support from the following 
observation. We consider the strong coupling limit a + CO. Donsker and Varadhan 
(1983), cf also Adamowski et al (1980a), prove that for V = O  the ground state energy 
E ( a )  (more precisely: the bottom of the spectrum of H with the zero point energy of 
the phonon field subtracted) scales as E ( a ) -  y a 2  and that y is given by Pekar's 
variational formula 

y = inf (i 5 d3xlgrad d3x d3x '~~(x ) (2~x-x '~ -1+ (x ' )12 ) .  (1.10) 
8, 1d3xl 8 ( x  ) I 2  = 1 

Numerically y = -0.108 5128.. .. Lieb (1977) shows that (1.10) has, up to translations, 
a unique minimum and that the minimising wavefunction is radial, infinitely often 
differentiable and has an exponential fall-off. This suggests that at infinite coupling 

P m ( 9 )  = + 0 ( d 2  (1.11) 

which means that the polaron is localised. (The correct scaling limit a + CO shows that 
the argument is more subtle.) The problem to be answered is then whether this 
corresponds to a zero temperature ( = infinite coupling) transition or whether it occurs 
at some finite value of the coupling constant. We will show here that the polaron is 
delocalised at any finite value of a in contrast to the variational calculations mentioned 
above. Our argument applies also to other types of polarons, cf § 4. 

As will be discussed in § 3, the polaron may exhibit another type of phase transition 
which to the statistical mechanics community is known as the pinning transition. 
Physically this transition is of a very different nature to the localisation transition 
explained before. Basically it is the effect that a suitable fixed impurity potential may 
no longer bind the polaron if the coupling strength to the optical mode becomes too 
weak. 

2. Absence of a roughening transition 

We first want to convince the reader that the delocalised (localised) polaron corresponds 
to a rough (smooth) interface in statistical mechanics models and that in view of this 
analogy the predicted phase transition is highly implausible. We consider a two- 
dimensional Ising model below the critical temperature in a square box, - N s i ,  j s N. 
At the upper part of the boundary, i.e. j 0, the spins are fixed to be +1 and at the 
lower part to be -1 (+  -boundary conditions). Then the region with predominantly 
+ spins will be separated by an interface from the predominantly - spin region. In 
approximation one tries to formulate an effective statistical model for the interface. 
One such model is the discrete Gaussian chain. To establish the connection with the 
polaron we formulate it immediately in the continuum. The position of the interface 
relative to the line j = 0 is denoted by x( t )  E R, - T < t s T. Then x( - T )  = 0 = x(  T ) ,  
which breaks the translation symmetry. The statistical weight of the interface is assumed 
to be 

(2.1) (Z(2T))- 'P(dx(  * ))6(x(-T))6(x( T)) e-'"'')) 
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with the action 
T 

S(X( . ) ) = p i i T  dt  1 dsg,((t-sl)(x(t)-x(s))2+A d tcosx ( t ) ,  (2.2) 
-T -T i-: 

p, g,aO. In the usual discrete Gaussian chain g, is short ranged or even zero. We 
consider here the general case (Kjaer and Hilhorst 1982). The action (2.2) appears 
also in the quantum dynamics of a superconducting tunnel junction coupled to the 
environment (Schmid 1983, Bulgadaev 1984, Guinea et a1 1985). Note that although 
the action is quadratic it is comparable to the polaron action in the sense that paths 
which stay close to each other have a larger weight than those which wander about. 
In fact Feynman used exactly the action (2.2), without the cos term, for his variational 
calculation, cf also Adamowski et a1 (1980b). 

The physics of (2.2) is partially understood. (There are no rigorous results on this 
model, except for the case g, = 0 which is the one-dimensional sine-Gordon theory 
alias neutral Coulomb gas (Lenard 1961, Prager 1962, Edwards and Lenard 1962, 
Aizenman and Martin 1980, Aizenman and Frohlich 1981). Duality transformation 
(Kjaer and Hilhorst 1982, Schmid 1983, Bulgadaev 1984, Guinea et a1 1985), numerical 
simulation (Slurink and Hilhorst 1983) and renormalisation group analysis (Bulgadaev 
1984, Guinea et a1 1985) together present the following picture. If g, decays faster 
than t - * ,  then the interface is rough for any coupling strength p, i.e. 

Iim(x(0)2)T = 00. (2.3) 
T-OC 

If g, decays slower than tC2, then the interface is smooth for any coupling strength 
p>O.  This means that 

lim(x(o)2>T < 00. (2.4) 
T-m 

For the polaron (~ (0 ) ’ )  = 5 dqp,( q ) q 2  = D( a). Therefore (2.4) corresponds to a 
localised polaron. Finally if gl(t) decays exactly as t -*  for large t, then a transition 
is expected: for small p the interface is rough and for large p it is smooth. There are 
predictions on the phase diagram in the ( p ,  A )  plane (Bulgadaev 1984, Guinea et al 
1985) and on the height-height correlations ((x(  t )  - X ( S ) ) ~ >  (Kjaer and Hilhorst 1982). 

For the occurrence of a phase transition the cos potential is crucial. If we set A = 0, 
then (2.2) is a Gaussian theory. By explicit calculation one observes that for a decay 
slower than t - 2  the interface is smooth (and p ( q )  is Gaussian), whereas for a decay 
faster than t W 2 ,  t - *  included, the interface is rough. If, however, the decay is precisely 
t-* for large t, then the interface has logarithmic fluctuations (rather than J T  as for 
faster decay). In this case the periodic potential has a chance to pin the interface. 

Comparing (2.2) with the polaron action we notice that the polaron action lacks 
the periodic external potential. This is not a severe problem. V could stand for the 
lattice potential which would play then the role of the cos potential. Also the polaron 
has three components rather than one as assumed in the above discussion. But the 
absolutely essential feature the polaron action is missing is the slow decay of the 
interaction: it decays exponentially and therefore much too fast. 

For the unconvinced we present a proof that for the polaron with an action where 
the Coulomb singularity is smoothened (equivalently, where the coupling to the phonon 
field is 1kI-l cut-off for large k )  and with an external potential V(x) = ~ K X ’ ,  K > 0, 

K lim -O+ (x2),(a, K )  = 00 (2.5) 

for any value of a 2 0. 
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Proposition. Let ( ) T ( ~ ,  K )  refer to the expectation with respect to the probability 
measure (1.3) with the action 

where U is the Coulomb potential regularised as 

U(x)  = 5 dy h(y)lx -A-'. 
h is radial, bounded, h 5 0 and dy h(y) = 1. Then 

lim inf(x(0)2)T(a, K )  23M-'(0,0) ,  
T-aU 

where M is the linear operator on L2(R) defined by 

with K (  t )  = 47r e-"'(h(x(O) - x( t)))(a, K ) .  M - ' (  a ,  a )  is the kernel of the inverse 
operator. 

Proof: We discretise [- T, TI in intervals of length E ,  E N  = T and E --* 0 at the end. 
Then the measure (1.3) is approximated as 

N-1 

J = - N  J = - N  2& I = - N  

a 1 N - 1  +- - E 2  1 gr[E(i--j)] U(x,-xJ 
i , j=-N 

(2.10) 

with the convention XN = x-N. 

We follow an idea in Brascamp et a1 (1977). Let -H be the function in the exponent 
and let ( a )  denote the average with respect to (2.10). Let M be the matrix with matrix 
elements 

Mzej ,  = ((azoH)(ajpH)), (2.11) 

where aim is the partial derivative with respect to the a t h  component of xi, a, p = 1 , 2 , 3  
and i, j = - N, . . . , N - 1. Then by partial integration and the Schwarz inequality 

Since M 3 K ,  we may set IC, = M - ' q  and obtain 

(2.12) 

(2.13) 

We compute the matrix M in the form (a,,aJpH). By rotation invariance MlaJp = 
&pMtJ and 

N-1 

KT,E( i , j ) -S,J 2 K T , E ( i ,  n) 
n = - N  
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Here Ai j  is the discrete Laplacian, Ajj  = 2, A, = -1 for Ii - jl = 1 and A, = 0 otherwise, 
with periodic boundary conditions and the kernel K , ,  is defined by 

(2.15) 

In (2.13) we set cpjP = c p ( ~ j )  with some smooth function cp and take the continuum 
K ,  E ( i, j ) = 4.rrg-r ( E I i - j I ) ( h (xi - Xj 1 ). 

limit E + 0 in the sense of quadratic forms. Then 1 dt  ds  P( t )P(s ) (x( t )  * X ( S ) ) T ( ~ ,  K )  3 3 

Here MT is the linear operator 

T 

dt  ds  cp(r)cp(s)M;'(t, s). (2.16) 
-T  5-: 

in L2([ - T, TI) with periodic boundary conditions, where 

KT(f ,  s) =4TgT(lt-sl)(h(x(t) -x(s)))T(a$ K ) .  

M;'(t ,  s)  is the kernel of the inverse operator. Clearly 

(2.18) 

KT(t ,  s)s4?rgT(/ t -s j )sup h. (2.19) 

Therefore we may pass to the limit T + CO and obtain (2.8) upon letting cp( 1 )  + 6( t ) .  

Let 

k ( w )  = dt  e'"'K(t). J 
Because of (2.19), k(0) - k ( w )  - w 2  for small w. Therefore 

- 1  

(R(0) - R ( ~ ) ) + K )  

(2.20) 

(2.21) 

diverges as l /& as K + 0. We need a decay of g(  t )  at least as slow as tC2 to be able 
to keep M-'(O, 0) finite. 

If the endpoints are kept fixed, i.e. x(  - T )  = 0 = x(  T ) ,  and K = 0, our estimate shows 
that ( ~ ( 0 ) ~ ) ~  3 constant x T and typical fluctuations are of the order n. Therefore 
an external periodic potential cannot localise x( . ). 

The variational calculations mentioned cannot distinguish between the action (1.4) 
and a mildly regularised one. Of course, the numerical value of a, would change 
under regularisation. Our result shows then that the transition predicted is an artefact 
of the approximation method used. 

Still, we have not ruled out the possibility of a localisation transition for the action 
(1.4). The difficulty is that in this case h ( y )  = 6 ( y )  and therefore the simple bound 
(2.19) breaks down. Let us first compute the expectation 

(S(x(t) -x(O)))(~,  K ) = [ ~ T / ( ~ ( o ,  o)+c(r, t)-2C(0, t ) ) I 3 l 2  (2.22) 
with C=( -d ' / d t '+~) - ' .  [C(O,O)+C(t,  t)-2C(O, t ) ] - t  for small t and tends to 
2 ~ / &  as t+m. In the lipit K+*O this quantity grows exactly as t. Then K ( t ) =  
e-t(2/t)3'2. Nevertheless K ( 0 )  - K ( w )  - w 2  for small w and the conclusion drawn 
from (2.21) would still remain valid. We were not able to obtain a bound on (S(x(t)  - 
x(O)))(a, K )  for a > 0 which would guarantee that k(0) - k ( w )  - w 2  for small w. For 
short 'times' x ( t )  should look like diffusion and therefore we would expect that also 

(6(x(t)-x(O)))(a,  K ) -  t - 3 / 2  (2.23) 
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for small t. For large r, even assuming localisation, (8(x( t )  -x(O)))(a, K )  should be 
bounded. If this and (2.23) are a bound on the actual behaviour, then M-'(O, 0) would 
still diverge as l/& as K + 0. The main technical difficulty is to exclude in (2.23) a 
divergence as tC3 or faster as t + O .  In that case the lower bound in (2.8) would drop 
to zero. 

3. The pinning transition 

Abraham (1980) considered a two-dimensional ferromagnetic Ising model, - M  S i G 

M,  1 S j S  N. The boundary conditions are periodic in the i direction, a-Mj = aM+lj, 
+ on the top, j = N, and + on the bottom except for a stretch - M < - T i < T < M 
where - boundary conditions are imposed. The half space limit, N, M + CO, is taken. 
There is a domain wall (contour) starting at ( - T - &  1) and ending at ( T + &  1) which 
separates those - spins connected with the stretch of - spins at the free surface from 
the + spins. This domain wall may have overhangs. Let Jl ( J 2 )  be the horizontal 
(vertical) coupling. Now the coupling between the zeroth and first layer is weakened 
as aJ2, O <  a < 1. Thereby domain walls closer to the free surface are energetically 
favoured and there is a transition associated with the pinning of the domain wall to 
the free surface. For temperatures p-' < p c ' ( a )  the distance of the domain wall from 
the surface is bounded as T + CO. The domain wall depins as ( p  - pc(a ) ) - '  for p + pc( a )  
and below pc typical domain wall fluctuations are of the order 0. 

In a simplified form (Burkhardt 1981, Kroll 1981) this pinning transition can be 
understood using the Onsager-Temperley solid-on-solid ( S O S )  model which neglects 
overhangs. To establish the connection with the polaron we formulate it as a continuum 
model for the distance h ( t )  of the domain wall from the free surface, h ( t ) a 0 ,  
- T S t S T, and h( - T) = 0 = h( T). Other versions are considered in Burkhardt (1981) 
and Kroll(1981). They are all in the same universality class, however. The distribution 
of the domain walls is given by 

p L 0. Here V( h )  = CO for h < 0 to guarantee the restriction h( t )  3 0. V has an attractive 
part at short distances and decays sufficiently rapidly as h+m, e.g. V could be the 
attractive single well potential V( h )  = CO for h < 0, V( h )  = - 1 for 0 S h S 1, and V( h )  = 0 
for h > 1. Obviously the transfer matrix of this model is e-'" with H the Schrodinger 
operator 

H =  - i A + p V  (3.2) 
on the positive half-line with Dirichlet boundary conditions at x = 0. Spectral properties 
of these operators are well understood. For p large, H has a normalised ground state 
IL0,@(x) with energy E o @ )  < 0 and possible other bound states. As p increases, Eo@) 
increases and tends to zero at some critical value pc. The ground state delocalises as 

JOm d x x 1 + ~ , ~ ( X ) 1 2 =  ( P  -w'. (3.3) 

Translating back to the domain wall model (3.1) we obtain that, in the limit T +  CO, 

( h ( O ) ) ( P )  <CO (3.4) 
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for P 2 Pc and that the average distance from the free surface diverges as 

( h ( O ) ) ( P )  = ( P  - Pc) - ' .  (3.5) 

Exactly the same phenomenon will happen for a model with three components 
and the distribution 

Here x( t )  E R3, V is a radial potential and P"(dx(.  ) )  refers to the Wiener measure 
generated by - (1/2m)A, i.e. the path measure of a free quantum mechanical particle 
with mass m. In connection with the polaron we think of V as fixed and vary the 
mass m, m 3 1. The transfer matrix is e-*H with H the Schrodinger operator 

H =  - (1 /2m)A+ V (3.7) 

on L'(R~).  
To have a pinning transition, H should have no bound state for m = 1 and should 

have bound states for m sufficiently large. This is a well understood chapter of atomic 
physics. We quote only one result and refer to the literature (Reed and Simon 1978, 
ch XIII.3 and XIII.15, Simon 1979, ch 111, Lieb 1976, Glaser et a1 1976) for a more 
complete discussion. 

For an arbitrary, not necessarily radial, potential V let 

d3x I V(x)I3/' < CO. (3.8) 

Let V- be the attractive part of the potential. If 

0.232 d3x I V - ( X ) ~ ~ ' ~  < 1 I (3 .9)  

then, for m = 1,  H has the spectrum [ O , o o )  and no bound states with negative energy 
whereas for m sufficiently large, H has a non-degenerate ground state with negative 
energy. 

The ground state delocalises as 

d 3 ~ ~ 2 1 $ 0 , m ( ~ ) 1 2 = ( m  - mJ2. (3.10) I 
(We are not aware of a proof only under the assumptions (3.8) and (3.9).) 

(exp[ik(x( t )  -x(O))])(a = 0) = exp[ - (2m)-'k2t], 

We return to the polaron. If a = 0, then for the electron with mass m 

(3.1 1 )  

t > 0. From a central limit type of argument we would expect that for the polaron, V = 0, 

(exp[ik(x(t)-x(O))])(a)=exp[ - (2m(a)) - 'k2t]  (3.12) 

for k- t  0, t -t CO with k2t fixed. Therefore it is natural to define the effective mass m ( a )  
as 

1 
m ( a  I - ' =  lim - ( (x(  t )  - 

1 - c c  3t (3.13) 
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In the appendix we prove that, with a cut-off of l/lkl for large k, m(a)-’  depends 
analytically on a. To obtain an estimate on m ( a )  the usual procedure is to use the 
variational action 

t 5 dt dsg( t - s ) (x( t ) -x(s ) )2 ,  (3.14) 

g( 1) = g( - t )  and g 3 0. For this action the effective mass is 
m 

- = I + [  dt t2g(t) .  
-m 

(3.15) 

If g is chosen as in the Feynman trial action with parameters optimal for the ground 
state energy, then 

m ( a )  = 1 +da (3.16) 

for small a and 

m( a )  = (2a/3&I4 (3.17) 

for large a. 
In analogy to the action (3.6) we expect a pinning transition for the polaron: in 

addition to the interactions with the polar crystal the electron moves in the external 
potential V satisfying (3.8) and (3.9). Then for a > a,, (~ ’ (0 ) )  ( a )  = 5 dq q 2 p m ( q )  < 00 

and 
(x2(0>)(a)=(or -aJ2  (3.18) 

as a + a,+. One could also keep a fixed and vary the strength of the potential. Then 
for A sufficiently large, (x2(0))(a, A V )  <CO and 

(X’ (O) ) (~ ,AV)=(A -A,)-’ (3.19) 

as A + Ac+. 
We assumed the critical exponent, -2, to be identical to the one of (3.6). Because 

of the exponential decay of memory the polaron attains its effective mass essentially 
on a ‘time’ of order one. On such a coarsened scale the polaron has the form (3.6) 
with m = m ( a ) .  Since this is only approximately so, the critical coupling is somewhat 
shifted relative to its value determined from m, = m( aJ. However, the critical exponent 
should not change. 

A physically realistic impurity potential is the screened Coulomb potential V(x) = 
-(Q/lxl) exp(-hlxl) with 0, ko>O. Relation (3.9) is satisfied provided (Q/ko) ~ 0 . 8 .  
The Coulomb potential has always an infinite number of bound states and therefore 
does not satisfy our condition. 

4. Other polarons 

From the two transitions described, physically, the roughening transition is the more 
interesting one. Since it cannot be achieved for an electron interacting with the 
longitudinal optical mode of an ionic crystal, we should understand whether a roughen- 
ing transition may occur for other types of polarons. The Frohlich Hamiltonian is 
generalised to 

d3kw(k)a;ak+& d3kA(k) eik”(ak+a+_k). (4.1) 
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Here w,  w ( k )  3 0, is the dispersion relation of the phonon field and &, a > 0, the 
coupling constant. We impose rotational invariance by w (  k )  = w (  I kl )  and A ( k )  = A (I k ( ) .  
The action is given by 

with, in the limit T + a ,  

d3k (A(k)(2e-w(k)" '  e .  ikx (4.3) 

If we apply the method of the proposition to the action (4.2) with a general G, 
then the kernel K ( t, s) = K ( t - s) is given by 

K ( t ) =  -f(A,G(t, x ( t ) - x ( O ) ) ) ( a ,  K), (4.4) 

where Ax is the Laplacian with respect to the second argument of G and ( . )  ( a ,  K )  is 
the average with respect to Z(2T)-'  exp[-Sr(x( *))I, with V = ~ K X ~ ,  in the limit T + a .  
To conclude that the lower bound diverges as K -$ 0 we need that K ( t )  has a finite 
second moment. This yields the following. If d3 k A (k)' < a and 

1 d3k A ( / ~ ) ~ k ~ / w (  k ) 3  < 00, (4.5) 

then the polaron with Hamiltonian (4.1) is delocalised for any coupling strength a. 
This criterion holds in arbitrary spatial dimension. 

The criterion (4.5) applies to the acoustical and optical polaron by the deformation 
potential (Toyozawa 1961, Sumi and Toyozawa 1973, Gross 1976) for which w ( k )  = Ikl 
(resp. = 1 )  and A (  k )  = (resp. = 1 )  for small k. It also applies to the acoustic polaron 
by the deformation potential in one dimension (Tokuda and Kato 1982) for which 
o ( k )  = lkl, A ( k )  = m. An interesting proposal is to consider electrons on a film of 
liquid helium (Jackson and Platzman 1981). The authors obtain, setting all constants 
equal to one, U (  k ) 2  = ( k  + k 3 )  tanh k and A (k) '  = k tanh k / w (  k )  and the k integration 
is two-dimensional. Again (4.5) excludes a roughening transition. 

Another proposal is the piezoelectric polaron (Mahan and Hopfield 1964) with 
w (  k )  = I kl, A ( k )  = l / m  and a cut-off for large k. This yields in (4.5) a small-k behaviour 
as 1 /  k2 which is integrable in three dimensions. 

On a formal level the only natural candidate for a roughening transition is U (  k )  = Ikl 
and A ( k )  = 1 k(-3'2.  Heuristically one expects logarithmic fluctuations which may be 
localised by the periodic lattice potential, if the coupling is strong enough. 

It is not understood for which class of couplings A ( k )  and dispersions w ( k )  the 
polaron exhibits a roughening transition. But (4.5) sets rather severe limits on its 
observability. 

5. Conclusions 

We have shown that the polaron does not undergo a localisation transition in contrast 
to what has been suggested by some variational calculations. Physically this is quite 
obvious once the analogy to the roughening transition is understood. We support our 
argument also on a rigorous level. If a cut-off for large k (i.e. a smoothening of the 
Coulomb singularity) is introduced in the polaron action, then a lower bound proves 
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delocalisation at any coupling strength. In addition the ground state energy and the 
effective mass are analytic functions of the coupling constant cy. We expect these 
properties to remain true when the cut-off is removed. A proof, however, requires a 
non-trivial extension of our results. 

Our lower bound on the second moment applies also to other polarons, ruling out 
a localisation transition there. As an effect of a physically distinct nature the polaron 
should undergo a pinning transition in a suitable, fixed pinning potential. 
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Appendix. Effective mass and its analytic dependence on the coupling constant 

The proof below was explained to the author by R L Dobrushin. We consider the 
general polaron (4.1) and assume I d 3 k A ( k ) 2 < x  ('41) 

and the existence of two constants c1, c2 > 0 such that 

d3kA(k)' e - w ( k ) l t l s  c1 exp(-c,]tl). I 
Note that the Frohlich polaron with A (  k)  = 1 kl-' and a cut-off for large k such that 
A (k)' becomes integrable satisfies ( A l )  and (A2). 

The heuristic idea behind the proof is simple. Instead of x ( t )  we consider its 
increments x( t ) .  Then x( t )  - x(0) = ji dTx(7) and the effective mass is 

m(cy)-' = f d t (x( t )  * x(0)). (A3) I 
The distribution of increments is 

2 (2T)- 'P(dx(  * ) )  exp [ a [-: d t  [r, ds G( t - s, Isf d ~ x ( ~ ) ) ] .  (A4) 

P(dx(  )) is white noise, the derivative of Brownian motion. If we define the free 
energy, an 'external magnetic field' included, as 
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Now x( t )  forms a one-dimensional statistical mechanics system with three components 
whose interaction, though many-body, decreases rapidly. Therefore the free energy is 
expected to be analytic. 

To apply the theory in Dobrushin (1973, 1974) properly, we divide [-T, TI into 
intervals of unit length, say, T integer. In each interval [ j ,  j + l ) ,  j = - T, . . . , T - 1, 
the path x ( t )  is shifted by the amount x ( j ) .  Let y j (  . )  be the shifted path in the j th  
interval. t + y j (  t ) ,  O S  t s 1, is continuous and y j ( 0 )  = 0. The { t + y j (  t ) ,  O s  t s 1) are 
the 'spins'. Therefore the single site space is C([O, 11, R3). The single site measure 
Pl0,,] is Brownian motion starting at zero over the time interval [0, 11. Because Brownian 
motion has independent increments, the single site measures are independent. Rewrit- 
ing the action in terms of the y i (  .), the Hamiltonian of the spin system becomes 

H = -  j = - T  C a $ f + ' d s  j I J : ' d t G ( t - s , y j ( t ) - y j ( s ) )  

j - I  

m = i  
a ds IJj+' d t G( t - s, yj  ( t ) + y ,  ( 1 ) - yi  ( - c  

- T s i < j s T - l  

+ h y j ( l ) .  
j = - T  

The free energy is 

PLo,ll(dyj( a ) )  e-H 

We have 

I G( t, x), S I d3k A (k)' e-w(k)it ' .  b49) 

Therefore B) and C,) of Dobrushin (1973, 1974) are satisfied. Because of (A2) also 
D2) of Dobrushin (1973,1974) holds. Therefore we conclude that the free energy is 
analytic in a and h in a small complex neighbourhood of the real (a, h )  plane. 

In fact as stated the potential hy,( 1) does not satisfy the conditions of Dobrushin 
(1973, theorem 3), because yo(l) is unbounded. We circumvent this difficulty by 
including exp[ - hyo( l ) ]  in the single site measure. 

We conclude that 

is analytic in a. Furthermore m(a)- '>O by the lower bound of the proposition 
extended to the general polaron. 

The decay condition (A2) is fairly strong. On the basis of the proposition, extended 
to the general polaron, we conjecture that m(a)- '  is analytic under the weaker 
conditions 5 d3k A (k)' < CO and 5 d3k A ( k)'k2/W( k ) 3  < CO. We leave this as an open 
problem. 
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